#pragma header // TODO: shouldn't this be isolated? // // Description : Array and textureless GLSL 2D/3D/4D simplex // noise functions. // Author : Ian McEwan, Ashima Arts. // Maintainer : stegu // Lastmod : 20201014 (stegu) // License : Copyright (C) 2011 Ashima Arts. All rights reserved. // Distributed under the MIT License. See LICENSE file. // https://github.com/ashima/webgl-noise // https://github.com/stegu/webgl-noise // vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 mod289(vec4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 permute(vec4 x) { return mod289(((x*34.0)+10.0)*x); } vec4 taylorInvSqrt(vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; } float snoise(vec3 v) { const vec2 C = vec2(1.0/6.0, 1.0/3.0) ; const vec4 D = vec4(0.0, 0.5, 1.0, 2.0); // First corner vec3 i = floor(v + dot(v, C.yyy) ); vec3 x0 = v - i + dot(i, C.xxx) ; // Other corners vec3 g = step(x0.yzx, x0.xyz); vec3 l = 1.0 - g; vec3 i1 = min( g.xyz, l.zxy ); vec3 i2 = max( g.xyz, l.zxy ); // x0 = x0 - 0.0 + 0.0 * C.xxx; // x1 = x0 - i1 + 1.0 * C.xxx; // x2 = x0 - i2 + 2.0 * C.xxx; // x3 = x0 - 1.0 + 3.0 * C.xxx; vec3 x1 = x0 - i1 + C.xxx; vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y // Permutations i = mod289(i); vec4 p = permute( permute( permute( i.z + vec4(0.0, i1.z, i2.z, 1.0 )) + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) + i.x + vec4(0.0, i1.x, i2.x, 1.0 )); // Gradients: 7x7 points over a square, mapped onto an octahedron. // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) float n_ = 0.142857142857; // 1.0/7.0 vec3 ns = n_ * D.wyz - D.xzx; vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7) vec4 x_ = floor(j * ns.z); vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N) vec4 x = x_ *ns.x + ns.yyyy; vec4 y = y_ *ns.x + ns.yyyy; vec4 h = 1.0 - abs(x) - abs(y); vec4 b0 = vec4( x.xy, y.xy ); vec4 b1 = vec4( x.zw, y.zw ); //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0; //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0; vec4 s0 = floor(b0)*2.0 + 1.0; vec4 s1 = floor(b1)*2.0 + 1.0; vec4 sh = -step(h, vec4(0.0)); vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ; vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ; vec3 p0 = vec3(a0.xy,h.x); vec3 p1 = vec3(a0.zw,h.y); vec3 p2 = vec3(a1.xy,h.z); vec3 p3 = vec3(a1.zw,h.w); //Normalise gradients vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; // Mix final noise value vec4 m = max(0.5 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0); m = m * m; return 105.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), dot(p2,x2), dot(p3,x3) ) ); } struct Light { vec2 position; vec3 color; float radius; }; // prevent auto field generation #define UNIFORM uniform uniform float uScale; uniform float uIntensity; uniform float uTime; uniform float uPuddleY; uniform float uPuddleScaleY; uniform sampler2D uBlurredScreen; uniform sampler2D uMask; uniform sampler2D uLightMap; uniform int numLights; const int MAX_LIGHTS = 8; UNIFORM Light lights[MAX_LIGHTS]; float rand(vec2 a) { return fract(sin(dot(mod(a, vec2(1000.0)).xy, vec2(12.9898, 78.233))) * 43758.5453); } float ease(float t) { return t * t * (3.0 - 2.0 * t); } float rainDist(vec2 p, float scale, float intensity) { // scale everything p *= 0.1; // sheer p.x += p.y * 0.1; // scroll p.y -= uTime * 500.0 / scale; // expand Y p.y *= 0.03; float ix = floor(p.x); // shift Y p.y += mod(ix, 2.0) * 0.5 + (rand(vec2(ix)) - 0.5) * 0.3; float iy = floor(p.y); vec2 index = vec2(ix, iy); // mod p -= index; // shift X p.x += (rand(index.yx) * 2.0 - 1.0) * 0.35; // distance vec2 a = abs(p - 0.5); float res = max(a.x * 0.8, a.y * 0.5) - 0.1; // decimate bool empty = rand(index) < mix(1.0, 0.1, intensity); return empty ? 1.0 : res; } float rippleHeight(vec2 p, vec2 pos, float age, float size, float modSize, float thickness) { float strength = 1.0 - exp(-(1.0 - age) * 1.0); float h = max(0.0, 1.0 - abs(length(mod(p - pos + modSize * 0.5, vec2(modSize)) - modSize * 0.5) - size * age) / thickness); h = h * h * (3.0 - 2.0 * h); // smoothstep return h * strength; } vec2 puddleDisplace(vec2 p, float intensity) { vec2 res = vec2(0); const int numRipples = 30; const float rippleLife = 0.8; const float rippleSize = 100.0; const float rippleMod = rippleSize * 2.0; for (int i = 0; i < numRipples; i++) { float shift = float(i) / float(numRipples); float rippleNumber = uTime / rippleLife + shift; float rippleId = floor(rippleNumber); rippleId = rand(vec2(rippleId, i)); float x = rand(vec2(rippleId, rippleId + 1.0)) * rippleMod; float y = rand(vec2(rippleId + 2.0, rippleId + 3.0)) * rippleMod; vec2 pos = vec2(x, y); float age = fract(rippleNumber); float thickness = 4.0; float eps = 1.0; vec2 pScale = vec2(1, 1.0 / uPuddleScaleY); float hc = rippleHeight(p * pScale, pos, age, rippleSize, rippleMod, thickness); float hx = rippleHeight((p + vec2(eps, 0)) * pScale, pos, age, rippleSize, rippleMod, thickness); float hy = rippleHeight((p + vec2(0, eps)) * pScale, pos, age, rippleSize, rippleMod, thickness); vec2 normal = (vec2(hx, hy) - hc) / eps; res += normal * 20.0; } return res; } vec3 lightUp(vec2 p) { vec3 res = vec3(0); for (int i = 0; i < MAX_LIGHTS; i++) { if (i >= numLights) { break; } vec2 lp = lights[i].position; vec3 lc = lights[i].color; float lr = lights[i].radius; float w = max(0.0, 1.0 - length(lp - p) / lr); res += ease(w) * lc; } return res; } vec2 worldToBackground(vec2 worldCoord) { // this should work as long as the background sprite is placed at the origin without scaling return worldCoord / uScreenResolution; } void main() { vec2 wpos = screenToWorld(screenCoord); vec2 origWpos = wpos; float intensity = uIntensity; vec3 add = vec3(0); float rainSum = 0.0; const int numLayers = 4; float scales[4]; scales[0] = 1.0; scales[1] = 1.8; scales[2] = 2.6; scales[3] = 4.8; for (int i = 0; i < numLayers; i++) { float scale = scales[i]; float r = rainDist(wpos * scale / uScale + 500.0 * float(i), scale, intensity); if (r < 0.0) { float v = (1.0 - exp(r * 5.0)) / scale * 2.0; wpos.x += v * 10.0 * uScale; wpos.y -= v * 2.0 * uScale; add += vec3(0.1, 0.15, 0.2) * v; rainSum += (1.0 - rainSum) * 0.75; } } //vec3 light = (texture2D(uLightMap, screenCoord).xyz + lightUp(wpos)) * intensity; vec3 color = sampleBitmapWorld(wpos).xyz; /* bool isPuddle = texture2D(uMask, screenCoord).x > 0.5; if (isPuddle) { vec2 wpos2 = vec2(wpos.x, uPuddleY - (wpos.y - uPuddleY) / uPuddleScaleY); wpos2 += puddleDisplace(wpos / uScale, intensity) * uScale; vec3 reflection = texture2D(uBlurredScreen, worldToScreen(wpos2)).xyz * 0.3 + 0.3; float reflectionRatio = 1.0; color = reflection; } */ vec3 rainColor = vec3(0.4, 0.5, 0.8); color += add; color = mix(color, rainColor, 0.1 * rainSum); // vec3 fog = light * (0.5 + rainSum * 0.5); // color = color / (1.0 + fog) + fog; gl_FragColor = vec4(color, 1); }